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Economic Benefit of Powerful Credit Scoring

ABSTRACT

In this paper, we study the economic benefits from using credit scoring mod-

els. We contribute to the literature by relating the discriminatory power of a credit

scoring model to the optimal credit decision. Given the Receiver Operating Charac-

teristic (ROC) curve of the credit scoring model, we derive a) the profit-maximizing

cutoff regime and b) the pricing curve. In addition, we study a stylized loan market

model with banks that differ in the quality of their credit scoring model. We find

that profitability varies substantially among lenders. More powerful credit scoring

models lead to economically significant differences in credit portfolio performance.

JEL Classification Codes: D40, G21, H81

Key Words: Bank loan pricing; Credit scoring; Discriminatory power; Receiver

Operating Characteristic (ROC).



In this paper, we investigate the economic benefit of credit scoring models. Ordinal perfor-

mance measures such as, e.g., the Receiver Operating Characteristic (ROC) curve, are widely

used to assess the discriminatory power of credit scoring and rating models. However, perfor-

mance statistics and common lending practice seem to be two separate worlds. We show how

to reconcile ordinal power measures with metrics like profit and loss. In addition, we present a

simple loan market model where banks with different credit scoring models compete for loans.

By calibrating the model, we find that higher discriminatory power translates into significant

profit improvement.

For banking institutions, loans are often the primary source of credit risk. Traditional

lending practice has been to grant loans that have a positive net present value (NPV) and to

deny those that do not. Recently, the use of statistical models has increased significantly. To

assess the risk of these loans, banks use credit scoring models and credit ratings to estimate

default risk on a single obligor basis.

Loans to small and medium sized companies, mostly unrated firms, are an important

portion of most banking institutions’ portfolios. Since the individual amount of exposure to

such firms is often relatively small, it is uneconomical to devote extensive resources to the

credit analysis. Therefore, for such borrowers, banks use credit scoring models instead of

rating models. The credit scoring model should optimize both the likelihood of a bad obligor

being accepted and the likelihood of a good obligor being rejected. Similarly, in the case of

a pricing-based lending, a credit scoring model with low discriminatory power can lead to

underpricing of bad and overpricing of good loans. For a recent survey on the use of credit

scoring models, we refer to Thomas (2000) and Thomas, Edelmann, and Crook (2002).

In evaluating the performance of credit scoring models, it is common practice to use ordinal

measures such as, e.g., the Receiver Operating Characteristic (ROC) curve and its associated

discriminatory power statistics. However, it is not a priori clear how discriminatory power is

linked with credit decision making and credit risk pricing. Establishing such a link is essential

for the profitability of the bank’s credit business. If in a market with several suppliers of loans

in which, by means of a higher default prediction accuracy, one bank knows better than its
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competitors about the quality of loans, the information advantage may translate into better

profitability figures.

In this paper, we show how lenders can incorporate the scoring model and its ROC-based

performance measure into traditional lending practices, based on NPV considerations. By

relating the discriminatory power of a credit scoring model to the optimal credit decision, we

derive a) the profit-maximizing cutoff regime and b) the pricing curve. In addition, to analyze

the economic impact of discriminatory power, we study a stylized loan market with banks that

differ in the quality of their credit scoring model. We find that profitability varies substantially

among lenders. More powerful credit scoring models lead to economically significant differences

in credit portfolio performance.

The paper is organized as follows. Section I explains the Receiver Operating Characteristic

(ROC) concept to assess the discriminatory power of credit scoring models. Section II describes

how profit-optimal credit decisions can be deduced from ROC statistics. In section III, we

present a stylized loan market model under different market regimes. For each regime, we

calculate different economic figures, like market share and profit. Section IV concludes.

I. Discriminatory power

Credit scoring models can err in two ways. First, the model may indicate low risk when, in

fact, the risk is high. This error, typically referred to as α-error, corresponds to the assignment

of high credit quality to obligors who nevertheless default or come close to defaulting. The

cost of the bank is the loss of credit amount and/or interest. Secondly, the model may indicate

high risk when, in fact, the risk is low. This error, usually referred to as β-error, relates to

low-rated firms that should, in fact, be rated higher. Potential losses resulting from this second

type of error include the loss of return and fees as well as a drop in market share when loans

are either turned down or lost through non-competitive pricing. Table 1 gives an overview of

the various costs occurring from α- and β-errors.

[ Table 1 here ]
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There exist several methods to measure the statistical performance of credit scoring models.

One of the most applied methods is the Receiver Operating Characteristic (ROC). The ROC

analysis is a technique originally used in medicine, engineering, and psychology to assess the

performance of diagnostic systems and signal recovery techniques (see, e.g., Egan (1975)).

The ROC curve is a two-dimensional measure of classification performance and visualizes

the information from the Kolmogorov-Smirnov statistics. It is constructed by calculating the

α- and β-errors for every possible cutoff level t. The two sets of errors correspond to the

coordinates of the Receiver Operating Characteristic (ROC) curve. (See also Sobehart and

Keenan (2001) as well as Engelmann, Hayden, and Tasche (2003) for a discussion of measuring

discriminatory power of credit scoring models).

The ordinate of the ROC curve is scaled as the hit rate, i.e., one minus the α-error, under

the null hypothesis that high scores translate into high default probabilities

1− α(t) = P {S > t|Y = 1}

=: P {SD > t} ,

where S is the credit score and SD is the conditional credit score of defaulters. The abscissa

is scaled as the false alarm rate (β-error)

β(t) = P {S > t|Y = 0}

=: P {SND > t} ,

where SND is the conditional credit score of non-defaulters. The construction of the ROC curve

is illustrated in Figure 1, where we show possible distributions of rating scores for defaulting

and non-defaulting obligors. For a perfect rating model, the left distribution and the right

distribution would be separate. For a real credit portfolio, perfect discrimination is not possible.

Both distributions will overlap. In Figure 1, the dark area under the population of defaulters

represents the α-error. The shaded area under the population of non-defaulters represents the

proportion of false alarms (β-error) generated by the model in response to the particular cutoff

score t.
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[Figure 1 here]

Figure 2 plots the ROC curves for four different models: Model I, Model II, as well as

a random and a perfect rating model. In Figure 2, the diagonal line corresponds to random

forecasts. When the curve bows away from the diagonal line to the upper left corner, this

indicates an improvement of the model’s performance. Thus, the ROC of a powerful rating

model is steep at the left end and flat near the point (0, 1). Similarly, the larger the area

below the ROC curve, the better the model. This area is usually called the AUROC. A nice

interpretation of the AUROC is given by, e.g., Bamber (1975) and Hanley and McNeil (1982).

[Figure 2 here]

Formally, under the null hypothesis that high score values indicate low creditworthiness,

AUROC is defined as

AUROC = −
∫ ∞

−∞
P {SD > y} dP {SND > y}
︸ ︷︷ ︸

area rectangle

−
∫ ∞

−∞

1

2
P {SD = y} dP {SND > y}

︸ ︷︷ ︸

area triangle

.

By transforming we get

AUROC =

∫ ∞

−∞

[

P {SD > y}+ 1
2

P {SD = y}
]

dFSND
(y)

=

∫ ∞

−∞

∫ ∞

−∞

[

1{x>y} +
1

2
1{x=y}

]

dFSD
(x) dFSND

(y)

= P {SD > SND}+
1

2
P {SD = SND} ,

where FSND
and FSD

are the non-defaulters’ and defaulters’ distribution functions, respectively.

The last line follows by the assumption of independent draws out of the two populations. For

continuous random variables, we have P {SD = SND} = 0. An AUROC of 0.5 (area of the
orthogonal, isosceles triangle) reflects random forecasts, while AUROC = 1 (area of the square)

implies perfect forecasts. For any reasonable rating model, the AUROC lies between 0.5 and

1.

We note that the discussion of power must always take place with the understanding that,

if the goal is to compare two models, calculation of power needs to be done on the same
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population. Power statistics are especially sensitive to the sample chosen when the number

of defaults is limited, as is typically the case in commercial lending. Therefore, differences in

samples may lead to different assessments of power (see also Hamerle, Rauhmeier, and Roesch

(2003) and Stein (2002)). In the subsequent analysis, we report the discriminatory power as a

measure for the entire loan market and, consequently, on the same population.

II. Credit Decision

In this section, we extend the ROC analysis and link it to an NPV analysis to deduce optimal

credit decisions. First, we discuss the derivation of profit-maximizing threshold values (cutoff

regime). Second, we show how the pricing curve can be derived from the ROC curve (pricing

regime).

A. Cutoff regime

The basic use of ROC analysis is to provide guidance for setting the lending cutoffs. The

user can define model scores below which a loan will be granted and above which it will

not. However, the determination of the cutoff level is an arbitrary choice, most often based on

qualitative arguments such as, e.g., business constraints. From a value-maximizing perspective,

such a determination is in general suboptimal.

A more rigorous criterion can be derived with knowledge of the prior probability of default

and the associated costs and revenues. To this end, we make the simplifying assumptions that

there are exogenously determined costs of default and a single market premium R for bearing

credit risk.1 Given this risk premium, a bank can either accept or reject a loan. Table 2 gives

an overview of the cash-flows involved in case of default and in case of non-default, respectively.

[ Table 2 here ]
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Given the default probability and the expected cash-flows, net present value NPV per unit

of credit amount (i.e., one US Dollar) dependent on the credit score t can be written as

NPV(t) = − 1 + 1

1 + δ
[P {Y = 1|S = t} (1− LGD) + P {Y = 0|S = t} (1 +R+ C)] ,(1)

where δ is the risk-adjusted discount rate. We assume all quantities to be adjusted for a one-

period time horizon. LGD denotes loss-given default and includes recovery costs. Recovery

costs or workout fees depend heavily on law enforcement and liquidity of the collateral. We

treat LGD as an exogenously determined constant value or expected value, respectively.2 In

equation (1), R represents the interest to be paid at maturity, P {Y = 1|S = t} is the condi-
tional probability of default given knowledge of the credit score. Relationship managers often

use the argument of “strategic value” when taking on seemingly negative-NPV loans. We

capture this strategic value by C, which is an (real) option to make follow-on business such as,

e.g., private banking activities.

In the subsequent analysis, we will assume that the bank does not invest in negative NPV-

projects. Thus, the lender rejects all obligors that do not fulfill either of the following two

inequalities (2) and (3) below:

R ≥ P {Y = 1|S = t}
P {Y = 0|S = t}LGD − C +

δ

P {Y = 0|S = t} (2)

≥ P {Y = 1|S = t}
P {Y = 0|S = t}LGD − C (3)

= −P {Y = 1} dα(t)
dt

P {Y = 0} dβ(t)
dt

LGD − C (4)

= −P {Y = 1}
P {Y = 0}

dα(β(t))

dβ(t)
LGD − C. (5)
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A bank loan that fulfills inequality (3) is profitable. If it meets inequality (2), then the loan

deal adds value to the bank’s credit portfolio. We deduce equation (4) from the fact that

α(t) = P {S ≤ t|Y = 1}

=
1

P {Y = 1}

∫ t

−∞
P {Y = 1|S = s} dF (s),

1− β(t) = P {S ≤ t|Y = 0}

=
1

P {Y = 0}

∫ t

−∞
P {Y = 0|S = s} dF (s),

where F is the distribution function of random variable S. We use the differential quotient

somewhat informally in equation (4). In practice, the curve defined by a ROC analysis may be

a step function and is therefore not differentiable. Nevertheless, we use it to convey the con-

ventional meaning when interpreting ROC curves as if they were continuous and differentiable

at least once.

Therefore, the required risk premium R(t) for a specific credit risk score t increases a) with

the steepness of the ROC curve, i.e., with − dα(β)
dβ
, b) with the discount factor δ, c) with the

loss-given default LGD, and d) with the expected default frequency P {Y = 1}. In contrast,
the required risk premium R(t) decreases with the value of the real option C.

In equation (3), we can set the discount rate equal to zero, i.e., δ = 0, the net present value

equals profit. Rearranging equation (2), we arrive at

−dα(β(t))

dβ(t)
≤ P {Y = 0}

P {Y = 1}
R+ C

LGD
=: s. (6)

The left-hand side of the inequality represents the slope of the ROC curve at point t. A

bank certainly refuses all obligors with negative expected profit. Hence, the bank rejects

all applicants with a score t and a corresponding slope of the ROC curve higher than s. The

numerator in (6) represents the probability-weighted opportunity cost of withholding lending to

non-defaulters. The denominator represents the probability-weighted recovery cost of accepting

defaulters.
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We call the straight line in the ROC graph with slope s an iso-profit line. All points on the

straight line achieve the same profit. The point at which the line with slope s forms a tangent

to the ROC curve defines the optimal cutoff t∗. At this point, expected marginal profit is zero,

i.e.,

−P {Y = 0} (R+ C)
dβ(t)

dt

∣
∣
∣
∣
t=t∗

= P {Y = 1}LGD
dα(t)

dt

∣
∣
∣
∣
t=t∗

,

or, using (4),

P {Y = 0|S = t∗} (R+ C)
︸ ︷︷ ︸

conditional expected revenue

= P {Y = 1|S = t∗}LGD
︸ ︷︷ ︸

conditional expected loss

(7)

The above findings are consistent with our general intuition. At the optimal cutoff, the

probability-weighted marginal cost of a mistake has to equal the marginal benefit for a correct

decision. In other words, all obligors with a conditional expected revenue higher than or equal

to the conditional expected loss are accepted.

To give some intuition of how the optimal truncation values behave, consider the examples

given in Figure 3 that shows how the cutoffs and the ranking of the various models change

as we vary cash-flow assumptions. We plot four different cash-flow scenarios for each of the

models, i.e., the perfect and the random model, and Model I and II. On the dashed line we

have constant profit and the closer the line to the point (0, 1), the higher is the profit. For

tangency between the ROC curve and iso-profit line, the slopes must be equal.

In practice, it is often the case that a particular model will outperform another model under

some specific set of cash-flow assumptions, but can be disadvantageous under a different set

of assumptions. If the ROC curve for two models cross, then neither model is unambiguously

better than the other with respect to a general cutoff. When one ROC curve completely

dominates the other, such as the perfect model, the dominant model will be preferred for any

possible threshold value. For example, in the upper left panel of Figure 3, we are indifferent

between Model I and Model II, but we prefer both of them over the random model. By slight

changes of cash-flow assumptions, we prefer either Model I or Model II.

[Figure 3 here]
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If we have to accept or reject applicants based on the random model, it is either optimal

to accept all applicants

P {Y = 1}LGD < P {Y = 0}R,

or to refuse all

P {Y = 1}LGD > P {Y = 0}R.

Under some extreme cash-flow assumptions, it might be best to work with no model at all (see

lower right panel of Figure 3).

Nowadays, risk spreads for bank loans are not stale and depend on the creditworthiness of

each obligor. Banks set prices based on the predictions of their models, and there is no longer

a single market-price for bank loans. Therefore, it is important to have a powerful model in

order to derive competitive prices.

B. Pricing regime

In a pricing regime, the banks sets the prices of the loan according to the credit score. The

bank will accept all applicants paying this price. Therefore, the main challenge for the bank

lies in the determination of the appropriate and optimal price.

As an economically meaningful criteria, we assume that the bank does not invest in negative

NPV projects. Then, the bank sets minimum prices for a borrower based on the predictions

of its model, i.e.,

R(t) ≥ −P {Y = 1}
P {Y = 0}

dα(β(t))

dβ(t)
LGD − C, (8)

where R(t) is the credit risk spread, now as a function of score value t. If equality applies the

expected profit would be zero.

We rewrite (8) by introducing k ≥ 0,

R(t) + C =
P {Y = 1|S = t}
P {Y = 0|S = t}LGD + k. (9)
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In the long run, a bank cannot offer loans for a revenue R(t) + C lower than the right hand

side of (8). Therefore, this term marks a lower bound, i.e., a minimum price. Since the slope

of the ROC curve determines the minimum price, we can link pricing rule and ROC curve,

both graphically and functionally.

Figure 4 shows two credit scoring models with the same discriminatory power but different

minimum pricing schemes. We also plot the random rating model. For this model, the slope

of the ROC curve is one. Therefore, every borrower has to pay the same interest rate, ceteris

paribus. The bank cannot apply a price discrimination strategy. On the other side, if a bank

disposes of a perfect scoring model, all defaulting obligors are refused and the others have to

pay the risk-free rate or even less if they are “relationship” customers. Note that with a steeper

ROC curve, the bank can put in place a more effective price discrimination strategy.

[ Figure 4 here ]

C. Mixture of cutoff and pricing regime

Credit specialists question both cutoff and pricing regime, since both approaches do not reflect

a real credit environment. A cutoff regime oversimplifies today’s lending practice in which risk-

adjusted pricing is common practice. A pure pricing regime has also its shortcomings. First,

it is questionable whether the risk premium is strictly exogenous. One could imagine that a

high risk premium may backfire, in the sense that it triggers a failure. A high risk premium

may therefore increase the default probability. Secondly, one should challenge the assumption

that obligors pick or change their current bank only based on slight pricing differences. A good

relationship between an obligor and a bank is of value and might keep obligors from switching

banks, even though they would have been charged a lower risk premium by another bank.

With the above arguments in mind, we suggest a different approach that consists of a

mixture of cutoff and pricing regimes. We construct such a mixture model as follows. First,

we start with the pricing rule (9). Unlike the pure pricing regime, the risk premium R(t) is

rounded, i.e., toward the next quarter of a percentage point. By doing so, we capture the

impact of transactional costs. Slight changes in pricing do not necessarily lead to a loan deal
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for the bank that would offer at the lowest exact rate as in a pricing regime. If two or more

banks offer at the same rounded rate, the bank is selected by random. Secondly, obligors whose

risk premia exceed an upper threshold value are rejected. This assumption mitigates possible

feedback effects of high risk premium on default events.

III. Loan Market Model

Given the profit-maximizing cutoffs or optimal pricing rules, a bank can run into severe adverse

selection problems. A rational credit applicant closes the deal with the lender that provides

the most favorable terms. When the bank derives the price from the credit score, a low-power

model results in a non-competitive pricing system. Hence, a marginal power improvement may

lead to a sizeable profitability increase.

Moreover, the quality of the credit scoring model may play a decisive role on how the

market is shared among the competing banks. For example, imagine two financial institutions,

one with a very high-power model (or even the perfect model), whereas the other bank does the

credit business without any model. The first bank will experience almost no defaults, as most

of them are absorbed by the second bank. Even worse, the second lender will place almost no

loan contracts with non-defaulting obligors, due to overpricing.

To better understand the economic impact of scoring methods with given discriminatory

power, we present a stylized loan market model and analyze the three market regimes as

described in the previous section, i.e., the cutoff regime, the pricing regime, and the mixture

of cutoff and pricing regime. The cutoff regime is rather conservative, since the bank uses the

credit score to either accept or reject costumers at an exogenously given risk premium. The

probability of acceptance depends on the credit score. In the pricing regime, the lender is able

to either attract or alienate obligors by applying a “smart” pricing scheme. All applicants are

offered loans with corresponding risk adjusted credit spreads. Hence, the accepting probability

is fixed at one, but the credit risk premium varies with credit scores. By mixing cutoff and

pricing, both probability of acceptance and credit spread are attached to the score. Therefore,

the mixture regime is closer to common market practice.
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We assume a market that is composed of three lenders with credit rating scores S1, S2, and

S3. By Y
∗, we denote the unobservable creditworthiness. We make the following distributional

assumption










S1

S2

S3

Y ∗











v N





















0

0

0

0











,











1 ρ ρ ρ1

ρ 1 ρ ρ2

ρ ρ 1 ρ3

ρ1 ρ2 ρ3 1





















. (10)

We note that, since S1, S2, S3 and Y ∗ represent ordinal measures, we can assume normalized

variables without loss of generality. By the principle of parsimony, we adopt equal correlation

among credit scores ρ. If the correlation ρ is high and if there are differences in discriminatory

power, then the result will be a high profit difference, ceteris paribus. The default indicator Y

is defined as follows

Y =







0 : Y ∗ ≤ c,

1 : Y ∗ > c,

where the threshold c is calibrated to match the unconditional probability of default P {Y = 1} =
Φ(−c). The conditional probabilities of default are computed as

P {Y = 1|Si} = Φ



− c− ρiSi
√

1− ρ2
i



 , (11)

P {Y = 1|Si, Sj} = Φ






−
c− ρiSi − ρj−ρρi

1−ρ2 (Sj − ρSi)
√

1− ρ2
i −

(ρj−ρiρ)
2

1−ρ2







. (12)

The conditional default probability (11) corresponds to the unconditional probability P {Y = 1},
if credit score Si and creditworthiness Y

∗ are independent, or equivalently if ρi = 0. Later, we

will also investigate the economic impact when a bank finds out about the scoring method of a

competitor and employs this knowledge to increase forecasting accuracy. Then, the conditional

probability of default can be conditioned on two different scores. This conditional probability

is computed in equation (12).3
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A. Calibration and simulation

To calibrate the models, we resort to the experience of credit officers as well as statistical

findings. Usually, we find high correlation between statistical credit scores, which is basically

driven by a similar information set. Since the information for making default predictions is

typically based on financial key figures, computed by balance sheet and income statement, the

credit scores between two banks are highly correlated in absolute terms. Therefore, we fix ρ

at 0.8. The remaining correlation coefficients ρ1, ρ2, and ρ3 are set at 0.48, 0.5, and 0.52,

that corresponds to AUROC levels in practice. An LGD of 0.4 results as a weighted average

of collateralized and blank credits. We further fix the unconditional probability of default at

P {Y = 1} = 0.02 and the corresponding threshold at c = 2.0537. These values are in line with
practical experience.

In the mixture regime, the prices are rounded toward the next quarter of a percentage point.

Credit officers argue that they still keep obligors from moving, even if the bank’s credit spread

is, on average, around one eighth of a percentage point higher than risk premia of competitors,

by virtue of connecting with customers. In case of a mixture regime, all credit applicants with

rounded risk premia higher than 2.5% are rejected. In both the pricing and mixture regime,

we set k −C in (9) equal to 30 basis points for all obligors. In practice, customer relationship

manager of typical retail banks rarely impose credit risk spreads higher than 2.5%. For the

cutoff regime, we assume a constant risk premium R of 75 basis points. Finally, we fix the

market potential for bank loans in the economy at USD 100 billion.

Starting from this basic setting, we are in a position to calculate different statistics for all

three market regimes, e.g., AUROC, price per creditworthiness, market share per creditwor-

thiness, market share defaulters and non-defaulters, loss, revenue, profit. To calculate these
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statistics, we use Monte-Carlo simulation. To briefly illustrate the simulation approach, we

look at the first two draws from the Monte-Carlo simulation (see equation (10)),

















0.4991

−0.1177
0.0208

0











,











1.5059

0.8904

1.6744

2.3263











, . . .







. (13)

The first draw represents a median client. One half of the population have better, the other

half lower creditworthiness Y ∗. The random credit scores of 0.4991 (Bank 1), -0.1177 (Bank

2), and 0.0208 (Bank 3), lead to default probabilities of 0.0193, 0.0074 and 0.0084 according

to equation (11). The second draw represents a defaulting client, because the creditworthiness

exceeds threshold c = 2.0537. The corresponding conditional probabilities are 0.0646, 0.0316,

and 0.0830.

B. Cutoff regime

In case of evaluating the economic impact in a cutoff regime, the assumption is that all three

banks lend at the same risk premium. Therefore, price is not a discriminator. In a first step,

the obligor chooses, with equal probability, one bank at random. If the score of the borrower

was below the cutoff of the credit scoring model the bank is using, the loan will be assigned

to that bank. If the score was above the cutoff, the borrower picks, again at random, one of

the remaining two banks. If the score was below that cutoff, the loan is assigned to the bank

of second choice. If not, the borrower’s score on the last model is compared to that model’s

cutoff. If not accepted at the last bank, it is assumed that the loan would be denied by all

three banks.

For our calibration defined above, the optimal cutoffs t∗, according to (7), are 0.4628, 0.4912

and 0.5199. This means that Bank 3 is willing to accept more applicants than Bank 1 and

Bank 2. Figure 5 depicts the derivation of profit-maximizing threshold values. By referring to

sample vector one in (13) we see that this actual non-defaulter is rejected by Bank 1, credit

score of 0.4991 is higher than cutoff of 0.4628, and accepted by Bank 2 and Bank 3. Therefore,
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the revenue of R = 0.0075 is expected to being split between Bank 2 and Bank 3. In the second

simulation (defaulting loan) in (13), all three credit scores exceed the corresponding cutoffs.

Thus, the potential borrower is rejected by all three lenders.

[ Figure 5 here]

Figure 6 plots probability of acceptance versus creditworthiness, with y-axis labeling on the

left, and plots expected offering premium versus creditworthiness, with y-axis labeling on the

right. The risk premium is fixed at R = 0.0075 and not variable (green horizontal line). What

we observe is that a median borrower has a probability of 0.7011 (0.7146, 0.7285) of being

accepted by Bank 1 (Bank 2, Bank 3). Comparing the high-power model (Bank 3) to both

the medium-power (Bank 2) and low-power model (Bank 1), the probability of acceptance is

higher for “good” and lower for “bad” borrowers. The three curves intersect at around 91%.

Hence, defaulting obligors, on the right hand side of the solid vertical line, have the greatest

chance of getting a loan at Bank 1 (low-power).

[ Figure 6 here]

Figure 7 plots market share versus creditworthiness, with y-axis labeling on the left, and

plots expected revenue versus creditworthiness, with y-axis labeling on the right. A median

loan exhibits a probability of 0.2760 (0.2857, 0.2960) of going to Bank 1’s (Bank 2’s, Bank 3’s)

loan portfolio. The expected revenues on a median loan are 20.7, 21.4 and 22.2 basis points,

respectively, as can be observed from the green lines. The market share and the expected

revenue curves both cross at around 91%.

[ Figure 7 here]

Table 3 shows expected market share for the whole population, defaulters, and non-

defaulters. Bank 3, applying the best-performing model, closes more loan deals and accepts

less defaulting loans, compared with its competitors. Thus, a high-power model leads to a

more profitable credit-portfolio and a smaller recovery portfolio. This discrepancy underscores

the adverse selection problem for banks with weaker models in a competitive market.

[ Table 3 here]
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C. Pricing regime

Unlike cutoff, the pricing regime allows variable credit spreads. All banks derive risk premia for

loans according to equation (9), with k = 0.0030, and with no relationship benefit, C = 0. This

means, all three banks price each loan with conditional expected profit equal to 30 basis points,

corresponding to their credit scoring models. “Conditional” refers to the information set which

consists of the credit score. Therefore, using only the banks’ credit scores, information about

the baseline default rate and knowledge of the cash-flows of lending, all banks set prices for

loans.

To illustrate the pricing and selection mechanism, we refer to the two sample vectors in

(13). According to the pricing rule in equation (9), the two simulations result in exact premia

of 109, 60, 64 basis points (first draw, non-defaulter) as well as 306, 161, 392 basis points

(second draw, defaulter). In both simulation draws the loan is granted by Bank 2. In the first

draw, Bank 2 makes a revenue of 60 basis points. However, in the second draw, Bank 2 has to

write off a loss of 40%.

Figure 8 shows both probability of acceptance (fixed at one) and expected premium offered

by the corresponding bank. Around two thirds of all the borrowers can expect lower risk

premia at Bank 3 with the high-power model. The remaining third of the population consists

of “bad obligors.” They are attracted by the lower premium of Bank 1 and Bank 2 that are

operating with the medium-power and low-power model, respectively.

[ Figure 8 here]

Figure 9 plots the expected market share, left y-axis, and expected revenue, right y-axis,

per creditworthiness. The better the credit quality of the obligor, the more likely the obligor

is closing the deal with Bank 3 using the high-power model. Given a defaulting borrower, it is

more probable that Bank 1, with a low-power model, is granting the credit. The probability

that a defaulter (non-defaulter) closes the deal with the high-power Bank is 28.7% (39.6%).

The corresponding probabilities for the low-power Bank are 38.2% and 27.5%, respectively.

Aggregated market share numbers are shown in Table 4.
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[ Figure 8 and Table 4 here]

The above analysis shows that the bank pricing with the most powerful model, due to a

more exact estimate of the probability of default, can price the loans more attractively for those

borrowers that are less likely to default, and more expensively for those that are more likely to

default. On average, the poorer credits end up going to banks with weaker models. Borrowers

with low default probability will end up doing business with banks that apply more powerful

scoring models. The bank using the weaker model is in effect creating adverse selection for

itself. These differences in pricing and market shares will necessarily lead to different profits

as displayed (see Table 4).

D. Mixture of pricing and cutoff regime

In the previous two subsections, we discussed the cutoff and pricing regimes. Credit officers

and customer relationship managers alike would probably discard both regimes. Consequently,

we propose a mixture model that is closer to an actual credit banking environment.

Consider again the sample vectors in (13). These draws result in exact premia of 109, 60,

64 basis points (first draw) as well as 306, 161, 392 basis points (second draw). Rounding these

figures results in risk premia of 1%, 0.5%, 0.75% and 3%, 1.50%, 4%, respectively. Bank 2 gets

both loans – the former (non-defaulter) for a revenue of 0.5%, the latter (defaulter) for a loss

of 40%. Bank 1 and Bank 3 reject the defaulting obligor, since the risk premium would exceed

the upper bound of 2.5%.

Figure 10 shows both the probability of acceptance and the expected risk premium. Unlike

pricing and cutoff, both measures depend on the nonobservable creditworthiness. Bank 3 (high-

power) is inclined to accept more creditworthy borrowers at lower risk premia than Bank 2

(medium-power) and Bank 1 (low-power). Right from the vertical line, where we find defaulting

borrowers, the story goes the other way around. These findings on a microstructure can be

confirmed on a market level, as illustrated in Figure 11.

[ Figure 10 and 11 here]
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Table 5 summarizes the findings in Figure 10 and 11. The profit difference among banks

amounts to up to USD 69.1 millions. The mixture regime is more competitive than cutoff. In

the cutoff regime, the profit difference reaches only USD 22.6 millions. However, the mixture

regime is less aggressive than the pricing regime, in which we observe a maximum profit gap

of USD 110.6 millions. Loosely speaking, profit differences in a cutoff and pricing approach

determine lower and upper bounds for profit gaps in an actual banking environment.

[ Table 5 here]

E. Impact of Model Improvement and Additional Information

The previous section restricts the analysis to a cross-sectional perspective. Here, we are con-

cerned with the situation in which one of the competing banks changes its rating system

from one period to the next. Within the mixture regime, we study two different settings. In

the first setting, one competitor improves discriminatory power. In the second setting, the

rating methodology of one lender becomes public, either on purpose or because information

has leaked. Then, competitors will use the additional information in order to increase their

forecasting accuracy.

E.1. Improving the Credit Scoring Model

In the first setting, Bank 1’s summary statistic AUROC increases, from 0.8134 to 0.8300, i.e.,

by means of switching from an expert-based to a statistical scoring procedure. By comparing

Figure 10 to Figure 12, we observe a steeper pricing curve. True non-defaulters have to pay

less, actual defaulters more than before. For a median borrower, the expected offered risk

spread shifts from 83 basis points to 79 basis points. Similarly, Bank 1 would have accepted

less investment grade and more loans close to default than its competitors. After the switch

to the more accurate model, Bank 1 performs better but still lags Bank 3.

Bank 1’s rating switch affects competitors as well, since market shares change. A median

borrower now features a probability of 0.372 of heading towards Bank 1, up from 0.286, as
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depicted by Figure 13. Given this median borrower, Bank 1 (Bank 2, Bank 3) will now make

higher (lower) expected revenue of 20.2 (19.3, 21.2) basis points, compared to 18.8 (20.6, 22.6)

basis points before. Summarizing in Table 6, we can double-check that profitability and market

share figures have changed in favor of Bank 1 and at the expense of both Bank 2 and Bank 3.

E.2. Additional Information

We now assume that Bank 1 is applying its improved scoring model, but somehow the rating

knowledge has leaked. Bank 1 can only resort to its own scoring model, but Bank 2 and

Bank 3 combine their own model with Bank 1’s model for their default estimates. Clearly, the

combined models achieve higher accuracies than their stand-alone counterparts.

Figure 14 and Figure 15 plot expectations when Bank 2 and Bank 3 are able to use Bank 1’s

rating model in order to improve their default forecasts. We refer to Table 7 for market statis-

tics. Not surprisingly, Bank 1’s profit drops. Its profit difference amounts to USD 11.3 million,

compared to the situation when the rating methodology is not public. Hence, the information

leak offsets a large part of a profit increase caused by an improved scoring methodology. On

the other side, both Bank 2 and Bank 3 can improve their profits significantly by around USD

60 million, just by knowing the rating methodology of one competitor.

IV. Conclusion

In this paper, we provide rules how the credit score can be used for loan pricing by linking the

ordinal ROC curve with the pricing curve. We show that the slope of the ROC curve enters

the pricing rule. It turns out that the credit spread increases with the steepness of the ROC

curve. When the loan market does not allow risk adjusted pricing, we derive the profit-optimal

cutoff level values from the ROC statistics.

The profitability of a rating model depends also on other competitors’ discriminatory power

as well. In a stylized loan market, we study the economic impact of the discriminatory power

of the scoring models. Weak models will attract more “bad” borrowers and therefore, the
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competitor with a low discriminatory power will incur lower revenues and bigger losses. In

case of a cutoff regime, banks judging obligors based on a poor, unsound credit rating system

grant more loans to subsequent defaulters and refuse more non-defaulting borrowers. We show,

in quantitative terms, that these banks become unwittingly market leader in the segment

of distressed loans, resulting in a sizable recovery portfolio. In case of pricing and mixture

regime, a bank with a low-power model attracts bad customers through (too) high prices for

credit-worthy and (too) low risk premia for not-credit-worthy borrowers. An increase in the

discriminatory power of one bank affects the profits as well as the market shares of all other

lenders.

Common to all regimes is the fact that the better the scoring model, the lower is the risk

of adverse selection and the higher the added value to the bank. A lender can significantly

increase its loan portfolio by improving its rating system, with the positive side effect that

the recovery portfolio decreases. The increase takes place even in a saturated loan market.

Therefore, in an emerging and growing loan market, the rise in profit and market share will

be even greater.

Credit scoring is regarded as a core competence of commercial banking. We end our

discussion of the loan market model by giving a quantitative example that highlights the

economic disadvantage when this core competence is lost. If competitors can exploit another

bank’s rating knowledge, they can improve their own profits at the expense of the bank whose

knowledge has leaked. Therefore, banks should pay attention to whom they communicate their

scoring methodologies.
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Appendix

We construct a credit market with n banks as supplier of loans and obligors whose unobservable cred-

itworthiness is Gaussian distributed. If an obligor cannot pay interest or repay the loan at maturity,

the loan will be in default. Each bank makes default predictions based on credit scores and deduces

probabilities of default. The market has the following structure:
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where Si is the credit score of competitor i, S represents the [n× 1] column vector of credit scores, and

Y ∗ is the non-observable creditworthiness. The default indicator Y is defined as

Y =







0 : Y ∗ ≤ c,

1 : Y ∗ > c,

where c is a threshold value, calibrated form the unconditional probability of default p := P {Y = 1}
and q := P {Y = 0}, respectively.

A. Conditional distributions

The conditional distribution S|Y ∗ can be written following Hamilton (1994), pages 100 – 102, as
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The conditional distribution, Y ∗|S, is Gaussian distributed as
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Then,

P {Y = 1|Si} =

∫ ∞

c

f(Y ∗|Si)(y
∗)dy∗
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, (A.1)
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where f(Y ∗|Si) and f(Y ∗|Si,Sj) denote the density functions of the corresponding random variables, and

Φ is the standard normal distribution function.

By taking the first derivative

P {S ≤ s|Y } = (1− Y )
P {S ≤ s, Y ∗ ≤ c}

P {Y ∗ ≤ c}

+ Y
P {S ≤ s, Y ∗ > c}

P {Y ∗ > c} ,

we obtain

f(S|Y )(s) =
1− Y

q
fS(s)
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f(Y ∗|S)(y
∗)dy∗

+
Y

p
fS(s)
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c

f(Y ∗|S)(y
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By the same reasoning, we can derive the density functions for the conditional univariate random

variables Si|Y ∗ and Si|Y as
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)

+
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p
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i

)

,

where φ denotes the standard Gaussian density function.
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B. ROC curve

On the basis of the density function f(Si|Y ), we calculate α- and β-error, dependent on the threshold

value t, namely

αi(t) = P {Si ≤ t|Y = 1}

=
1

p

∫ t
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√
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i

)

ds (A.4)

The first line reflects the definition of the α-eroror, under the null hypothesis that obligors with a credit

score higher than t are defaulters. With the second type of error, we can proceed the same way

βi(t) = P {Si > t|Y = 0}

=
1

q

∫ ∞
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i

)
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For a given threshold level t, (β(t), 1−α(t)) constitutes one coordinate of the ROC curve. The curve is

drawn by running t from −∞ to +∞. AUROC denotes the area below the ROC curve and is computed

by

AUROCi = −
∫ ∞

−∞

(1− αi(t)) dβi(t)

=

∫ ∞

−∞

∫ ∞

−∞

1 {x > t} f(Si|Y =0)(x)f(Si|Y =1)(t)dxdt (A.7)

=
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√

1− ρ2
i

)

dxdt

The first two lines are true for all continuous credit scores, and the last line follows by the normal

assumption. From (A.7) AUROC can be nicely interpreted as the probability that the continuous

credit score of a non-defaulting obligor is lower than the one of a defaulting obligor, given the two
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scores were drawn independently. The slope of the ROC curve, s(t) := − dα(β(t))
dβ(t) , can be represented as

si(t) = −
dαi(t)
dt

dβi(t)
dt

=
q

p

Φ

(

− c−ρit√
1−ρ2

i

)

Φ

(

c−ρit√
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i

) (A.8)

where the second equality follows from (A.4) and (A.6).
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Figure 1. Construction of a ROC curve. The types of error refer to the null hypothesis that
the higher the credit score, the higher the default risk.
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Figure 2. Comparison of ROC curves.
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Figure 3. Trade-off between α− and β−error under different cost (LGD) and revenue (R)
assumptions.
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Figure 4. Same area below ROC curve may lead to different pricing schemes. By applying
a random model no price discrimination is possible, whereas a perfect model simply refuses all
defaulting obligors.
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Figure 5. ROC curves of the three banks with model-specific optimal cutoffs and correspond-
ing error rates, for given cash-flow assumptions. Bank 1 (Bank 2, Bank 3) accepts 67.8%
(68.8%, 69.8%) of all obligors according to profit-optimal cutoffs of 0.4628, 0.4912 and 0.5199.
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Figure 6. Cutoff regime: Probability of acceptance versus creditworthiness with y-axis
labeling on the left and expected offered premium versus creditworthiness with y-axis labeling
on the right. Credit spread is fixed.
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Figure 7. Cutoff regime: Expected market share versus creditworthiness with y-axis labeling
on the left and expected revenue versus creditworthiness on the right.
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Figure 8. Pricing regime: Probability of acceptance versus creditworthiness with y-axis
labeling on the left and expected offered premium versus creditworthiness on the right. Prob-
ability of acceptance is 1.
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Figure 9. Pricing regime: Expected market share versus creditworthiness with y-axis labeling
on the left and expected revenue versus creditworthiness on the right.
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Figure 10. Mixture regime: Probability of acceptance versus creditworthiness with y-axis
labeling on the left and expected offered premium versus creditworthiness on the right.
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Figure 11. Mixture regime: Expected market share versus creditworthiness with y-axis
labeling on the left and expected revenue versus creditworthiness on the right.
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Figure 12. Mixture regime – Bank 1 improves: Probability of acceptance versus creditwor-
thiness with y-axis labeling on the left and expected offered premium versus creditworthiness
on the right.
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Figure 13. Mixture regime – Bank 1 improves: Expected market share versus creditworthiness
with y-axis labeling on the left and expected revenue versus creditworthiness on the right.
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Figure 14. Mixture regime – Bank 1 improves, but Bank 2 and Bank 3 know methodology:
Probability of acceptance versus creditworthiness on the left and expected offered premium
versus creditworthiness on the right.
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Figure 15. Mixture regime – Bank 1 improves, but Bank 2 and Bank 3 know methodol-
ogy: Expected market share versus creditworthiness on the left and expected revenue versus
creditworthiness on the right.
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Tables

Actual

Low Credit Quality High Credit Quality
Lost potential profits,

Low and opportunity costs.
Credit Correct assessment Lost interest income and
Quality fees. Divest credits at

disadvantageous conditions.
Model

High Lost interest and
Credit credit amount through Correct assessment
Quality defaults. Recovery costs.

Table 1

Costs of errors

Default Non-Default

Loss given default, Interest and fees +
Cash flow recovery cost relationship benefit

LGD R(t) + C

Probability P {Y = 1|S = t} P {Y = 0|S = t}

Table 2

Cash flows and probabilities conditional on score S = t
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market figure Bank 1 Bank 2 Bank 3 Total

AUROC of model 0.8134 0.8245 0.8354 —

market share 0.2658 0.2729 0.2803 0.8189

share non-defaulters 0.2687 0.2762 0.2838 0.8287

share defaulters 0.1208 0.1135 0.1064 0.3407

profit 100.9 112.1 123.5 336.5

revenue 197.5 203.0 208.6 609.1

loss 96.6 90.8 85.1 272.6

Table 3

Market shares as well as profit, revenue & loss in million USD in the cutoff regime

market figure Bank 1 Bank 2 Bank 3 Total

AUROC of model 0.8134 0.8245 0.8354 —

market share 0.2771 0.3292 0.3937 1.0000

share non-defaulters 0.2749 0.3291 0.3959 1.0000

share defaulters 0.3821 0.3308 0.2870 1.0000

profit -74.6 -19.0 36.0 -57.7

revenue 231.0 245.5 265.5 742.0

loss 305.6 264.6 229.5 799.7

Table 4

Market shares as well as profit, revenue & loss in million USD in the pricing regime

market figure Bank 1 Bank 2 Bank 3 Total

AUROC of model 0.8134 0.8245 0.8354 —

market share 0.2846 0.3200 0.3597 0.9643

share non-defaulters 0.2848 0.3216 0.3626 0.9691

share defaulters 0.2709 0.2426 0.2171 0.7306

profit -27.3 7.6 41.8 22.1

revenue 189.3 201.6 215.4 606.4

loss 216.6 194.0 173.6 584.3

Table 5

Market shares as well as profit, revenue & loss in million USD in the mixture regime
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market figure Bank 1 Bank 2 Bank 3 Total

AUROC of model 0.8300 0.8245 0.8354 —

0.3208 0.3026 0.3401 0.9635
market share

(+0.0362) (-0.0174) (-0.0196) (-0.0008)

0.3225 0.3036 0.3424 0.9685
share non-defaulters

(+0.0376) (-0.0180) (-0.0202) (-0.0005)

0.2393 0.2526 0.2258 0.7177
share defaulters

(-0.0316) (+0.0106) (+0.0087) (-0.0128)

7.0 -10.0 24.4 21.4
profit

(+34.3) (-17.6) (-17.4) (-0.7)

198.4 192.1 205.1 595.6
revenue

(+9.1) (-9.5) (-10.3) (-10.7)

191.4 202.1 180.7 574.2
loss

(-25.2) (+8.1) (+7.1) (-10.0)

Table 6

Mixture regime: Bank 1 improves AUROC from 0.8134 to 0.8300; market shares as well as
profit, revenue & loss in million USD; in brackets, the difference to case of Bank 1’s AUROC

of 0.8134

market figure Bank 1 Bank 2 Bank 3 Total

AUROC of model 0.8300 0.8245 0.8354 —

0.2663 0.3115 0.3593 0.9372
market share

(-0.0545) (+0.0089) (+0.0192) (-0.0264)

0.2669 0.3141 0.3628 0.9439
share non-defaulters

(-0.0556) (+0.0105) (+0.0204) (-0.0247)

0.2378 0.1830 0.1889 0.6097
share defaulters

(-0.0015) (-0.0696) (-0.0369) (-0.1081)

-4.3 57.1 83.3 136.0
profit

(-11.3) (+67.0) (+58.9) (+114.6)

186.1 203.7 234.7 624.5
revenue

(-12.3) (+11.5) (+29.6) (+28.8)

190.5 146.6 151.4 488.5
loss

(-0.9) (-55.5) (-29.3) (-85.8)

Table 7

Mixture regime: Bank 2 and Bank 3 know rating methodology of Bank 1; market shares as
well as profit, revenue & loss in million USD; in brackets, the difference to case of proprietary

rating methodologies.
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